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In a fibre/metal matrix composite the mechanical properties of the matrix itself are 
changed by the presence of the reinforcing fibres. This changed behaviour of 
the metal is referred to as in situ behaviour, and a phenomenological model is 
developed to evaluate the in situ plastic stress-strain properties of a metallic matrix 
containing fibres, from a study of the properties of the composite. The model is based 
upon the idealised behaviour of the two components of the system. The application of 
the model to B/AI alloy composites shows that the plastic stress-strain behaviour 
of the matrix containing fibres varies strongly with the fibre volume content, and also that 
the matrix in situ cyclic stress-strain behaviour can be approximately described by a 
power law of the type: r162 where the strength coefficient and the exponent 
increase with the fibre volume fraction. It also predicts that in the steady state fatigue 
behaviour of the composites, the fraction of load amplitude carried by the fibres decreases 
with increasing applied stress amplitude, and is also dependent on the fibre volume frac- 
tion. The effect of the applied stress on the damping capacity is established through 
expressions derived from the basic ideas involved in the model, 

1, I n t r o d u c t i o n  
In composite materials consisting of fibres in a 
metal matrix, the onset of plastic flow in the 
metal matrix leads to deviation from a linear 
stress-strain relationship [i, 2]. For instance, 
it has been shown [2] that, under a cyclic 
stress, many composites develop, aftel the first 
few cycles, a stress-strain curve forming a 
closed hysteresis loop (referred to hereafter as 
the stabilised loop) reproducible for a great 
number of stress cycles. The presence of the 
reinforcing fibres stiffen the composite by 
carrying the load but there is an additional 
effect due to the fact that the properties of the 
matrix itself are changed by the presence of the 
fibres. The work presented is mainly concerned 
with determining the extent of this change in 
matrix properties. The data are interpreted on 
the basis of a model developed in section 2. 
This model is an extension of the model of 
Baker and Cratchley [2] to steady state condi- 
tions in fatigue. 
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2. The Cyclic Stress-Strain Model 
The mechanical properties of the metal matrix 
itself are changed by the presence of the rein- 
forcing fibres; this changed behaviour will be 
referred to as in situ behaviour in contrast to 
the behaviour of the same metal without 
reinforcement. A model is developed which 
permits the determination of the in situ be- 
haviour from cyclic stress-strain and normal 
(monotonic) stress-strain data of the composite. 
The model is an extension to a model given by 
Baker and Cratchley [2]. Therefore, the pre- 
liminary part of the model is given schematically 
using fig. 1, and reference must be made to 
[2] for full details. The model supposes that (1) 
the Bauschinger effect may be neglected; (2) a 
stabilised hysteresis loop exists for the matrix 
under cyclic stress; (3) this hysteresis loop 
shows well-defined elastic and plastic regions 
and zero slope in the plastic region (fig. 1 a). 

Fig. la  shows stabilised hysteresis loops for 
the unreinforced metal subjected to two different 
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values of the cyclic stress in the range 4- q~, 
and 4- q~ respectively. The cyclic stress-strain 
curve (dotted line) is the locus of the vertices 
of the rectangles in fig. lb; where the elastic 
strain was subtracted.* 
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Figure 1 Schematic development of the stress-strain 
behaviour of the composite and each component under 
saturation conditions. For explanation see the text, 

Fig. lc represents separately the behaviour 
of the fibres and matrix of the composite 
material subject to repeated tensile stress in the 
range 0 to ae while the matrix is subject to a 
cyclic stress, in the range 4- r 4- q~'2 respect- 
ively. OE is the stress-strain curve for the fibre 
which is always in the elastic region and shows 
no hysteresis. The loops represent the matrix 
behaviour where the loop position can be deter- 
mined by considering that at the completion of 
a cycle the tension in the fibre (BP) must be 
equal to the compressive stress in the matrix 
(BQ). In this case the hysteresis loops of the 
matrix represent the in situ behaviour and there- 
fore the parameters are not necessarily equal 
to those of fig. 1 a, and are marked with primes. 

Using this diagram, the cyclic behaviour of 
the composite as a whole can be constructed 

(fig. ld). Since only the stabilised cyclic be- 
haviour is considered the original origin of 
strain is not important and the curves are re- 
drawn taking the zero stress condition of the 
cyclic behaviour as the zero of strain (fig. le). 
The curves have the form of parallelograms with 
slopes El, a compromise between the elastic 
behaviour of fibre and matrix and E2, the result 
of elastic deformation in the fibre and plastic 
deformation of the matrix. Note that while the 
fibres are always in tension, from zero to some 
upper value, the matrix is alternately in tension 
(upper half of parallelogram) and compression 
(lower half). The locus of the vertices (ae, Ee) 
of the loops gives cyclic stress-strain data for 
the composite. 

By inspection of fig le the following relations 
may be written: 

2 r  E1 
ae = Em----~ + E~ Ae v' (1) 

2r 
Ee = ~ + Aev' (2) 

ae is the cyclic stress amplitude for the com- 
posite, while the matrix is subject to a cyclic 
stress range of 4- q~' (hence 2 q~' in equations 
1 and 2); ee is the cyclic strain amplitude of the 
composite and AEv' the plastic strain range. 
Era' is the in situ elastic modulus of the matrix 
and may be anticipated to lie between Em and 
El, where Em is the elastic modulus of the un- 
reinforced matrix. The combination of equations 
I and 2 gives 

(El - E2) 2 ~' 
+ E2 ~e (3) ae = Em' 

or 

(~re -- Ez ee) Era' 
q~' = 2 (El - E2) (4) 

In order to use these relations a value of Era' 
is needed. In subsequent paragraphs the prob- 
lem of its determination is considered. 

The monotonic (i.e. non-cyclic) stress-strain 
curve has, in general, two well-defined regions: 
stage I where both fibres and matrix behave 
elastically and stage II where the fibres behave 
elastically and the matrix plastically. However, 
the monotonic modulus in stage I, Ee, is not 
generally equal to El. In other words, although 
in both cases both components of the composite 
are deforming elastically, there is a difference 

*A cyclic stress-strain curve is defined as de' = f([A~'p]/2). [3] 
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in the modulus under cyclic and monotonic 
loading. Therefore, under fatigue test conditions, 
it is possible that both the fibre and matrix 
moduli are different from the unreinforced 
situation and different too from the values in 
the composite material under monotonic condi- 
tions. However, it has been shown [4, 5] that 
the fibre modulus under monotonic conditions 
is the same as the modulus of the free fibre. 
Thus, using a modified rule of mixtures [4, 6), 

Ee = Ef Vf + (1 - Vf) Ern" (5) 

it is possible to calculate Era", the monotonic 
modulus of the matrix in situ, where Ef and Vf 
are the free fibre modulus and volume fraction 
of fibre respectively. 

The difference between Ee and E1 may be 
due to changes in Ef under cyclic conditions 
or because Era" v ~ Fan', or both. It is reasonable 
to suppose, failing further experimental data 
or a decisive model, that both moduli change 
and that the situation is bounded by the possible 
conditions Era" = Era' or Ef unchanged. How- 
ever, in the present case, the difference between 
Ec and E 1 was small and the separation between 
these bounds gives values of ~b' which differ 
only by the order of the experimental error. 
Therefore, because Ee could be determined 
with greater precision than El, the calculations 
of Era' were all performed using equation 5 
and supposing Era" = Era'. 

3, Experimental Procedure 
Two 6061-T6 aluminium/boron composite plates 
with 25 and 40 ~ by volume of boron filaments 
in continuous and unidirectional reinforcement, 
were used in order to apply the model. In the 
composite fabrication process, an assembly 
of aluminium sheets 0.126 mm thick and boron 
filaments of 0.1 mm nominal diameter were 
disposed in alternative layers and hot pressed 
at 975~ (524~ for 30 rain to promote 
diffusion bonding. The composites were next heat 
treated at 950~ (510~ for 10 min, cold water 
quenched and aged at 350~ (177~ for 6 h. 

The test specimens wer~ straight-sided with 
tabs bonded on to the faces in the gripping areas, 
in order to minimise stress concentration and 
damage. The bonded doublers that have been 
utilised on the specimens were made from a 
6061 aluminium bar having approximately the 
same thickness as the composite tested. They 
were bonded to the specimen sides with Hysol- 
Epoxi. Specimens reinforced with 40 ~ boron 

filaments were 38 mm long, 6.1 mm wide, with 
a thickness of 0.81 mm. Each specimen con- 
tained about 365 filaments disposed in five 
layers. Specimens reinforced with 25 ~ boron 
filaments were 47 mm long, 1.06 mm wide and 
0.60 mm thick. The specimens contained approxi- 
mately 170 filaments distributed in four layers. 
All specimens were prepared in a Servomel 
spark cutting machine. 

Tension/tension tests on the composite speci- 
mens were carried out in an Instron machine, 
at a crosshead speed of 0.02 cm/min. 

4. Experimental Results 
4.1. The Cyclic Stress-Strain Curve 
Figs. 2 and 3 show a series of stabilised hysteresis 
loops for 40 and 25 ~ of volume fibre content 
respectively. In this figure the dashed lines 
represent the tangent at the origin and at the 
tip of each stable loop. The slopes of the dashed 
lines appearing in figs. 2 and 3 are the primary 
and secondary moduli for the corresponding 
loop. As can be observed, the variations in 
both quantities from one specimen to another 
are very small, therefore for each composite 
E1 and E2 were obtained by averaging the 
values measured from stabilised hysteresis 
loops for different applied stress amplitudes. 
The error introduced by using average values 
will be estimated later. E1 and E2 values are 
shown in table I. 

T A B L E  I 

Material  

Modu lus  40 ~ B/AI 25 ~ B/A1 

E1 
( kg /mm 2) 

E2 
(kg/mm ~) 

6061-T6 6061-T6 
27.5 • 103 18.0 • 103 

17.0 • 103 10.6 • 10 '~ 

The cyclic tension/tension stress-strain curves 
for the 6061-T6 aluminium alloys reinforced 
with boron filaments are shown in fig. 4 for 
25 and 40 ~ reinforcement. These curves were 
obtained from figs. 2 and 3 by plotting the 
applied stress against the stabilised strain. The 
monotonic stress-strain curves for both com- 
posites are also plotted in this figure where it 
can be observed that the monotonic curves 
are lower than the cyclic tension/tension curves, 
due to the change in origin of strain in the latter 
case, and also to work hardening of the matrix 

161 



ARI VARSCHAVSKY 

E,, , 

~ 6o ,/ E,//,/// , ~ / '  / / / "~ '  / ' ~  

) 2  
___ ~ ~ 1 X 10-31 

Strain 

Figure 2 Stabilised hysteresis loops for a 6061-T6 alurninium alloy reinforced with 40%/0 of boron fi laments 
after 20 cycles. 
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Figure 3 Stabil ised hysteresis loops for a 6061-T6 aluminium alloy reinforced with 25% of boron fi laments 
after 20 cycles. 
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Figure 4 Cyclic tension/tension and monotonic stress-strain curves for B 6061-T6 composites. 

as will be shown later from microhardness 
measurements. 

The in situ matrix modulus F.m' was next 
computed for insertion in equation 4. This was 
accomplished by using equation 5 in which 
respective values of  Ee must be determined. 
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From the monotonic stress-strain curves 
Ee = 17 x 103 kg/mm ~ for 25 % of reinforce- 
ment and E c = 2 6  x 103 kg/mm 2 for 40%. 
By using Ef = 38.5 • 103 kg/mm ~ [5, 7], one 
obtains from equation 5: 

E r a ' =  9.9 • 103 (kg/mm ~) 
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for 25 % of reinforcement, and 

E r a ' =  17.4 x 103 (kg/mm 2) 

for 40 % of reinforcement. 
Introducing the corresponding values of 

E~, E2 and Era' for each composite in equations 
2 and 4, we find that: 

r  = 0.70 (ere - 10.6 • 103 Ec)(kg/mm 2) (6) 

ec = 0.20 • 10 -sq~' + dep' (7) 

for 25 % of boron fibre content, and 

r  = 0.83 (a~ - 17 • 103 e~) (kg/mm 2) (8) 

ec = 0.12 x 10-ar ' + Aep' (9) 
for 40 % of boron fibre content. 

From each set of equations a function 
d?' =f(Aev' /2)  can be plotted for both com- 
posites, using corresponding values of ac and 
ec from the data of fig. 4; the results obtained 
are shown in fig. 5. It can be seen from fig. 5 
that at the same plastic strain amplitude the 
cyclic stress in the matrix (yield stress) r  
reaches much higher values when the percentage 
of boron filaments in the composite is higher. 

40 ~ boron 
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Figure 5 In situ cyclic stress-strain curves for the matrix 
in A I  6061-T6 boron reinforced composi tes.  

Fig. 5 is replotted on a log-log scale in fig. 6. 
It is observed that the in situ cyclic stress- 
strain curves can be drawn to a first approxima- 
tion as straight lines in these figures; thus the 
function r  =f(Aep'/2)  can be expressed by 
a power law: 

r  = r (A ep'/2) n . 

The strength coefficient r and the strain harden- 
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Figure 6 Log-log plot of curves appearing in fig. 5. 
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ing exponent "n" were determined from least 
square analysis of the data points. The values 
of "r and "n" are listed in table II. 

T A B L E  II 

Mater ia l  r ( kg /mm 2) n 

AI 6061-T6/40% B 5 0.7 

A1 6061-T6/25 % B 340 0.6 

It can be noticed that the hardening exponent, 
and the strength coefficient, increase with 
increasing reinforcement. The comparison be- 
tween the curves cannot be regarded as abso- 
lute since the hardening state of the matrix 
before the fatigue tests is different for different 
fibre volume fractions. This occurs because of the 
development of residual stresses in the composite 
due to cooling from the fabrication temperature. 

Calculation of the residual stresses resulting 
from the differences between the coefficients 
of thermal expansion of the matrix and the 
filaments shows that stresses higher than those 
needed for plastic flow are developed during 
the composite cooling. In fact, for filament 
spacing greater than filament diameter, the 
elastic radial stress err is given by [8]: 

a r r  = --  o ~ A T  \2rZ - -  E m  (10)  

where a = am - af, "a"  is the filament radius 
and AT the cooling temperature range. Em is 
the matrix modulus (7.03 • 10 a kg/mmZ). 

The distance from the centre of a filament to 
a point in the matrix ("r") ,  for which the elastic 
radial stress is equal to the yield stress of the 
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matrix (28 kg/mm2), was computed for the 
boron reinforced composites. With AT = 900~ 
(482~ a = 51 x 10 -a mm, am = 14.1 x 10 -~ 
mm/mm ~ ( =  7.83 mm/mm~ and ~f = 4.6 x 10-6 
mm/mm ~ F (=  2.55 mm/mm~ " r "  = 62 x 10 -a 
mm. This corresponds to a distance of 
11.8 x 10 -a mm from the fibre surface. That is, 
for a distance less than 11.8 x 10 -~ the radial 
stress would exceed the room temperature yield 
stress of the matrix. 

The fraction of matrix volume, "C" ,  for which 
the radial stress exceeds the matrix yield stress 
at room temperature is next computed by using 
the following relation: 

(rZ/a 2 -  1) 
C =  Vf 1 -  Vf (11) 

Substituting in this expression the value of "a"  
and " r "  already computed, " C "  becomes 0.16 
and 0.32 for 25 and 40 ~ of boron content, 
respectively. 

The above computations indicate that for 
40 ~ of boron filament content the average 
work hardening in the matrix must be higher 
than for 25 ~ of boron filament content, in 
the fabricated composite prior to the fatigue 
test. Hardness measurements confirm this argu- 
ment; for instance, the average Vickers micro- 
hardness taken in a virgin specimen matrix 
was 91 and 70 for 40 and 25 ~ by volume of 
fibre, respectively. 

4.2. The Fraction of Load carried by the 
Fibres 

The model here developed can be used to com- 
pute the fraction "B"  of tensile load amplitude 
on the composite which is carried by the fibres 

at the tip of a stabilised hysteresis loop. This 
fraction is given by: 

B =  1 - - (1 - Vf) (12) 
(7 e 

Substitution of equation 4 in equation 12 gives: 

Era' (~c - E~ Ec) (1 - Vf) 
B = 1 - 2 (E~ - Ez) ere (13) 

Introducing respective values of Era', El, E~ and 
V, in equation 13, "B"  can be evaluated for 
each set of values ~e and ~o obtained from fig. 4. 
Acurve showing"B" as a function of the applied 
stress ~e on the composite is shown in fig. 7, 
for both fibre volume fractions. It is observed 
in this figure that "B"  decreases more abruptly 
for the composite with 25 ~ of fibre reinforce- 
ment and also that the values of " B"  are some- 
what higher for this fibre content. 

The first of these two effects indicates that the 
percentage of hardening undergone by the 
matrix reinforced with 25 ~ of boron filaments 
is greater when the load amplitude is increased. 
In fact, due to the fabrication process, the 
matrix was in a lower hardening state " H "  
prior to the fatigue test for 25 ~ of boron con- 
tent, as explained in section 4.1. The subsequent 
rate of fatigue hardening, dH/dcre, is expected 
to be higher for this fibre volume fraction; this 
implies a higher rate of stiffening of the matrix. 
Since one of the important factors influencing 
the transfer of load to the fibres is the ratio 
between the stiffness of the fibres and the matrix 
which must be the highest possible [2], a higher 
value of the rate of stiffening of the matrix 
necessarily leads to a more pronounced decrease 
of "B"  with ~e. 
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Figure 7 Fraction of load B carried by t h e  f i b r e s  as  a f u n c t i o n  o f  t h e  a p p l i e d  s t r e s s  o n  t h e  composite. 

164 



T H E  M A T R I X  F A T 1 G U E  B E H A V I O U R  OF F I B R E  C O M P O S I T E S  

110 

100 

90 

Bo 

.C 

o '70 
u 

60 

5; 
5O 

40 

40%B Virgln specimens average harness [~e [  ~ ~ 

it0 i 3t0 I ~ ] J i i i I 
20 z,0 50 60 70 80 90 100 110 

Stress [kg/m~] 

Figure 8 Vickers microhardness versus applied stress amplitude for B 6061-T6 AI composites at the steady 
state behaviour. 

To show it is true that the rate of stabilised 
hardening dH/dcre is higher for the matrix 
reinforced with 25 ~ of boron filaments, the 
Vickers microhardness of the fatigued speci- 
mens was measured; the results are shown in 
fig. 8. 

Despite the higher values of "B'" which are 
expected for the 40 ~ boron composite, simply 
because of the greater volume fraction of fibre, 
the values are very similar for both composites 
(fig. 7). However in the 40 ~o boron composite, 
even before the fatigue tests, the aluminium- 
aluminium diffusion bonds have been found 
disrupted near the fibre surfaces due to imperfec- 
tions in the fabrication process. After the fatigue 
tests complete delamination of the aluminium- 
aluminium diffusion bonds was observed in the 
same regions, as illustrated in a fractured speci- 
men in fig. 9. This had reduced the effective 
fibre-matrix interface leading to a loss of 
efficiency in the transfer of load to the fibres. 
This can explain the similar values obtained 
for both 25 and 40 ~ boron reinforcement. 

4.3. Damping Behaviour 
The specific damping capacity is conventionally 
defined [2] as 

energy absorbed during one loading cycle p =  
maximum stored energy 

where the maximum stored energy is approxi- 
mately �89 G e e e .  The energy absorbed may be 

Figure 9 Scanning electron micrograph of a fatigued 
specimen with 40~/o of boron filaments. It can be observed 
delamination of the aluminium-aluminium bonds. 
(O'c = 95 kg/mm2; N = 25 cycles). 

estimated from the area of the loop or, in the 
approximation of the model, calculated from 
the geometry of the parallelogram (fig. 10), 
giving: 

Absorbed energy = (ere - E 2 ee) Aep' (14) 
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Where the meaning of each symbol has been 
previously defined. Substituting for Aep' from 
equation 2 and using equation 4 to eliminate r  
we have: 
Absorbed energy = 

(ere - -  E2 6e) ( E l  Ee - (Xe) 
E1 - E2 (15) 

Then the stabilised specific damping capacity 
is given by: 

2 ( ~  - E~ ~c) ( E l  ~o - ~c)  
P = (16) 

ae ee (Et - Ez) 

Introducing the "secant" modulus of the com- 
posite, Es = a e / e e ,  equation 16 becomes: 

2 (Es - E ~ )  (E~ - Es) 
P = Es (E~ -- Ez) (17) 

G0 m 

/ 1 "  , v o  
/ e , ) r  / 

E c -1 
Strcxin 

Figure 10 Schematic representation of composite hystere- 
sis behaviour at a particular stress level. 

For convenience equation 17 was used to calcu- 
late P in tSese experiments. In this case for 
constant Ej, E2 the P has a maximum value for 

Es = (E~ E~) 1:~ (18) 

A plot of the specific damping capacity versus 
the sec%nt modulus in A1 6061-T6 boron rein- 
forced com~msites is shown in fig. 11. This curve 
was o~t~.ined by using equation 17. As can be 
expecte:', higher values of " P "  are obtained for 
25 ~ of boron reinforcement. This kind of 
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damping can be attributed to internal friction 
depending upon stress amplitude, which is 
invariably associated with unpinning and move- 
ment of dislocations [9] leading to plastic 
deformation in the matrix. Therefore this 
observed behaviour may be explained by the 
fact that the matrix reinforced with 25 ~ of  
boron fibres is able to undergo a higher degree 
of plastic deformation than that with 40 ~ of  
boron reinforcement. 

As Es decreases with increasing values of ac, 
the stabilised damping capacity increases with 
the applied stress in the range of stresses used 
in performing the fatigue tests. Although the 
maximum of the curve was not reached in the 
present experiments since this maximum occurs 
near the fracture stress of the tested composites, 
it has been confirmed for an aluminium/ 
silica and an aluminium/stainless steel composite 
[10]. The reason for the maximum with stress 
has been explained [10] by attributing a more 
rapid build-up of elastic energy compared to the 
loss of energy due to plastic deformation. 

5. Accuracy of the Method 
The hysteresis loops of the B/A1 composites, 
for which the in situ cyclic stress-strain model 
of the matrix has been used, showed that the 
values of E1 and E~ remain almost constant 
with the applied stress amplitude. The error 
introduced by using the average values of E1 
and E~ in equation 4 have to be estimated. 
By differentiating this equation and by dividing 
it by r  it is found that: 

Ar ((7c - ec EO AE~ 
r  = (~c - ec E2) (E~ - Z2) (19) 

The values of E1 had a negligible dispersion and 
the values of Ez had a dispersion of 5 and 10 
for 25 and 40 ~ reinforcement respectively. 
The corresponding error in r  was 5 and 1 ~.  

In other composites for which E 1 and E2 
may not be constant, the expressions here 
developed to compute r  do not suffer any 
change; in this case the values of r  in equation 
4 must be computed for the respective values 
of E a ,  E~,  O'e and ~ in each hysteresis loop. 

Finally, the values of r  are somewhat under- 
estimated when it is assumed that there is zero 
slope in the plastic region of the matrix stabilised 
hysteresis loops. The damping capacity values 
are also higher than the real ones because a 
parallelogram was considered when computing 
the areas of the hysteresis loops. 
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Figure 11 Specific damping capacity versus secant modulus for AI 6061-boron reinforced composites. 

~7 

This model has the advantage, as has been 
pointed out, of  considering the presence of  
synergistic effects in the composite, since the 
expressions here developed make use of the 
experimental values of the primary and secondary 
moduli E:t and E2. 
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